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ABSTRACT

Aim Deforestation and climate change are two of the most serious threats to

tropical birds. Here, we combine fine-scale climatic and dynamic land cover

models to forecast species vulnerability in rain forest habitats.

Location Sulawesi, Indonesia.

Methods We sampled bird communities on four mountains across three sea-

sons in Lore Lindu National Park, Sulawesi, Indonesia (a globally important

hotspot of avian endemism), to characterize relationships between elevation

and abundance. Deforestation from 2000 to 2010 was quantified, and predic-

tors of deforestation were identified. Future forest area was projected under

two land use change scenarios – one assuming current deforestation rates and

another assuming a 50% reduction in deforestation. A digital elevation model

and an adiabatic lapse rate were used to create a fine-scale map of temperature

in the national park. Then, the effects of climate change were projected by

fitting statistical models of species abundance as a function of current tempera-

ture and forecasting future abundance based on warming from low- and high-

emissions climate change.

Results The national park lost 11.8% of its forest from 2000 to 2010. Model-

based projections indicate that high-elevation species (white-eared myza Myza

sarasinorum and Sulawesi leaf-warbler Phylloscopus sarasinorum) might be buf-

fered from deforestation because their ranges are isolated from human settlement,

but these species may face steep population declines from climate change (by as

much as 61%). The middle-elevation sulphur-bellied whistler Pachycephala sulfu-

riventer is predicted to undergo minor declines from climate change (8–11%
reduction), while deforestation is predicted to cause larger declines of 13–19%.

Main conclusions The biological richness and rapid deforestation now occur-

ring inside the national park emphasize the need for increased enforcement,

while our modelling suggests that climate change is most threatening to high-

elevation endemics. These findings are likely applicable to other highland tropi-

cal sites where deforestation is encroaching from below and climate change is

stressing high-elevation species from above.
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INTRODUCTION

Tropical mountain ranges are critical centres of avian ende-

mism, with about 10% of the world’s bird species being

restricted to tropical highlands (>500-m elevation; Harris

et al., 2011). Steep slopes and high elevations reduce the

pressure of anthropogenic habitat degradation and other

threats such as hunting on many of these species, resulting

in most highland tropical birds being considered of ‘least

concern’ (Sekercioglu et al., 2008; BirdLife International,

2013). Rapid habitat loss means that the bulk of IUCN-

listed species in tropical regions are found in the lowlands,

close to the concentration of human activity (e.g. Brooks

et al., 1997). While highland species have been buffered

from habitat loss in the past, the recent growth of human

populations and the demands of economic development

have put increasing pressure on higher-elevation habitats

(Soh et al., 2006). In coming decades, climate change also

threatens to reduce the habitat available for montane species

(La Sorte & Jetz, 2010; Noske, 2010), with many highland

tropical species facing climate-change-induced range shifts

combined with habitat contraction (Pounds et al., 2005;

Peh, 2007; Forero-Medina et al., 2011a,b; Harris et al., 2012;

Sekercioglu et al., 2012). This is a particularly serious con-

cern for species with few adaptation options, such as moun-

taintop endemics and those with narrow elevational ranges

(Colwell et al., 2008). Worryingly, the impacts of habitat

loss, climate change and other extinction drivers such as

invasive species are likely to interact synergistically (Brook

et al., 2008).

Given this context, studies that forecast species extirpa-

tion vulnerability due to habitat loss, climate change and

their interaction are urgently needed from the tropics. Two

previous analyses used coarse land cover scenarios and an

adiabatic lapse rate (estimate of temperature loss with

increasing elevation) to estimate the vulnerability of the

world’s birds to climate change and habitat loss, and found

that approximately 500 species (5% of the global total) may

go extinct by 2100 under a mid-range warming projection

by global climate models (Jetz et al., 2007; Sekercioglu

et al., 2008). Yet few analyses have projected spatially expli-

cit estimates of tropical deforestation (Soares-Filho et al.,

2006; Cannon et al., 2007; Bird et al., 2012; Green et al.,

2013; Rosa et al., 2013), and fewer still have combined fine-

scale land cover and climate models to produce regional

projections of extirpation vulnerability (Gregory et al.,

2012).

Southeast Asia’s combination of biological richness, varied

landscapes and severe on-going anthropogenic impacts

makes it a clear candidate for exploring the influence of hab-

itat loss and climate change on tropical biodiversity. South-

east Asia has one of the highest concentrations of endemic

species in the world, as a result of the region’s numerous

islands, tectonic history and fluctuating sea levels (Sodhi &

Brook, 2006). Unfortunately, regional deforestation is so

rapid that many species may lose the majority of their range

in the next 20 years (Bradshaw et al., 2009; Miettinen et al.,

2011). Within Southeast Asia, the Sulawesi region of

Indonesia is of special interest because it is among the

world’s richest hotspots of avian endemism, with 42 species

found nowhere else (Coates & Bishop, 1997). Despite this

diversity, Sulawesi is ornithologically one of the least studied

areas in the world, with higher elevations particularly poorly

sampled, and as a result, new bird taxa are still regularly

described (e.g. Madika et al., 2011).

In this study, we combine new data from the field with

global climate and dynamic landscape models to forecast vul-

nerability of endemic birds in Lore Lindu National Park,

Sulawesi. Although Lore Lindu is one of the island’s most

biodiverse reserves, it has suffered from rapid human

encroachment over the last decade (Cannon et al., 2007). We

used three middle- and high-elevation endemic birds as case-

study species to explore the potential effects of habitat loss

and climate change on Lore Lindu’s birds. Given that habitat

loss is pervasive at lower elevations in Sulawesi (Cannon

et al., 2007), and the forecasts of detrimental impacts in pre-

vious climate change studies (e.g. Colwell et al., 2008), we

hypothesized that: (1) habitat loss would threaten middle-

elevation species more than high-elevation species; and (2)

climate change would particularly threaten narrow-ranged

high-elevation species.

METHODS

Study site

Lore Lindu National Park covers 2290 km2 of Central

Sulawesi and is home to approximately 78% of Sulawesi’s

endemic bird species (Coates & Bishop, 1997; Lee et al.,

2007), making it one of the island’s most important pro-

tected areas (Fig. 1). The national park is under considerable

pressure from an increasing human population due to

migration from more populous parts of Indonesia, expansion

of cacao agriculture and illegal logging (Weber et al., 2007;

Clough et al., 2009). Most of the park lies above 1000-m ele-

vation (Fig. S1 in Supporting Information), and 96% of the

park was covered with primary forest in 2000.

Field sampling

We collected avian occurrence data on Mt. Nokilalaki (825–

2365 m; S 1°15.3′, E 120° 10′), Mt. Rorekatimbu (1265–

2525 m; S 1° 17′, E 120° 19′), Mt. Dali (1295–2280 m; S 1°
43′, E 120° 9′) and Mt. Rano Rano (480–1920 m; S 1° 39′, E
120° 7′) (Fig. 1). These four peaks are among the tallest

mountains in Central Sulawesi and are located at opposite

ends of Lore Lindu, providing broad coverage of elevations

and regions of the park. Our sampling effort was representa-

tive of the distribution of elevations in the park with forested

middle elevations most thoroughly sampled (Fig. S1). In

Appendix S1, we list coordinates of sampling sites and notes

on their land cover in 2010. Our study species are much less
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common or absent below 1000 m, so our focus on higher

elevations should not substantially impact our results.

We sampled bird communities with 10-minute duration,

50-m-radius point counts, separated by 250 horizontal

metres, along elevational gradients on mountain trails and

roads (Ralph et al., 1995). We sampled 149 points, 126 of

which were forested and within the elevational ranges of our

three study species (Appendix S1). When sampling along

roads (only done on parts of Mt. Rorekatimbu), we entered

the forest ~ 50 m from the road to do the point counts. We

controlled for seasonal variation in abundance by surveying

in three seasons (September–November 2009, May–June

2010 and January–February 2011). Each point was sampled

once in each season (points were visited three times in total).

Co-author D.D.P., who has >10 years’ experience identifying

Central Sulawesi birds by sight and sound, was the primary

observer in all surveys. We practiced distance estimation with

audio playback and a measuring tape to make the aural

50 m estimate more accurate. A Nikon Forestry 550 laser

range finder was used to check visual distance estimates.

Variability in detection may affect abundance estimates

during point counts (Tingley & Beissinger, 2009). We maxi-

mized detection by only censusing birds in the morning on

clear days with little wind (from dawn to 10:30). The poten-

tial for bias from differing detection probabilities along the

altitudinal gradient was evaluated by converting counts to

presence/absence data and modelling the probability of occu-

pancy along the gradient in package unmarked in R v2.14.1

(Fiske & Chandler, 2011; R Development Core Team, 2011).

Given that avian detectability may vary by season, we com-

pared occupancy models that incorporated seasonal variation

in detectability to those that modelled the effect of tempera-

ture on occupancy alone: Ψ(temperature)p(.),Ψ(.)p(season),

Ψ(temperature)p(season), and Ψ(.)p(.). Temperature was

calculated from elevation using an adiabatic lapse rate, and

season was a categorical variable that represented our three

sampling sessions. The Ψ(temperature)p(season) model was

top-ranked for all study species (wAIC of 0.54, 1.0, and 0.92

for Myza sarasinorum, Phylloscopus sarasinorum and

Pachycephala sulfuriventer, respectively). This occupancy

Figure 1 Location of Lore Lindu

National Park and our study area and

sampling sites. The two holes in the

national park are annexed village areas.

N indicates Mt. Nokilalaki, R indicates

Mt. Rorekatimbu, D indicates Mt. Dali,

and RR indicates Mt. Rano Rano.
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relationship was compared with probability of presence from

a binomial model that related temperature to presence/

absence. We postulated that if occupancy (which explicitly

accounts for detection probability) and probability of pres-

ence were similarly related to temperature, then there was no

systematic bias stemming from low detection probability

(Tingley & Beissinger, 2009).

Case-study species

For case-study species, we selected three locally common

endemic birds that differed in their altitudinal habitat prefer-

ences: middle-elevation Pachycephala sulfuriventer (sulphur-

bellied whistler), high-elevation Phylloscopus sarasinorum

(Sulawesi leaf-warbler) and mountaintop Myza sarasinorum

(white-eared myza) (Fig. 2; see Supporting Information for

more natural history information). We refer to the moun-

taintop Myza sarasinorum and high-elevation Phylloscopus

sarasinorum collectively as ‘high-elevation’ species. The three

species were chosen, in part, because they are rarely or never

seen in non-forest habitats in Lore Lindu (our data; Sodhi

et al., 2005; Maas et al., 2009).

Modelling abundance

We characterized the current relationship between tempera-

ture and abundance and forecast the potential effects of

climate change on bird abundance. Temperature alone is a

strong climatic driver of bird distributions in humid tropical

regions (e.g. Shoo et al., 2005a; Forero-Medina et al.,

2011b). We modelled temperature as a function of elevation

using an adiabatic lapse rate conversion. This is because tem-

perature is strongly correlated with elevation on tropical

mountains (Smith & Young, 1987; Bush et al., 2004), chang-

ing rapidly over small horizontal distances (Raxworthy et al.,

2008), and because fine-scale spatial climate layers for

Sulawesi are highly uncertain or unavailable at resolutions

below that of global climate models (Hijmans et al., 2005).

We used a locally measured lapse rate (6.1°C lost per 1000-

m elevation gained) to convert a fine-scale digital elevation

model (30 arc seconds, srtm.csi.cgiar.org) into an average

annual temperature layer of the same resolution. This was

carried out by relating temperature from a lowland weather

station to elevation via the lapse rate (see Appendix S2 for

details).

We then used statistical models to relate temperature to

abundance. We first converted bird abundance estimates

from birds per 0.79 ha (the area encompassed by 50-m point

count circles) to birds per 0.85 ha (30-arc-second cell in
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Figure 2 Abundance distributions of study species along

elevational gradients on four mountains in Central Sulawesi.

Average abundance per point count from three sampling

sessions � standard errors are shown. Data from all sample

points are shown including point count surveys where the

species was not recorded.
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central Sulawesi). Given the strong dependence of the study

species on forest habitats, we set cells without forest as

unsuitable. For the response variable, we considered using

the mean of the counts from the three sampling sessions or

the sum of the counts. We chose to use the sum of the

counts because 47–75% of the counts were zero, depending

on study species, and rounded means would cause a strong

downwards bias in abundance estimates. For example, birds

were frequently recorded singly in only one sampling session,

which gives a mean abundance of 0.33, which rounds to

zero. Nonetheless, the sum of the counts should be viewed

as an upward estimate of abundance. We analysed the zero-

inflated data using a two-step hurdle modelling approach.

Firstly, we modelled the probability of presence, assuming a

binomial distribution and therefore defining suitable habitats

where this probability is non-null. Then, we modelled the

abundance in suitable habitats only, using a truncated

Poisson distribution (Potts & Elith, 2006; Jackman, 2011).

Hurdle models often out-perform other zero-inflated regres-

sion approaches based on integrated distributions (Potts &

Elith, 2006; Zeileis et al., 2008) and are relatively straightfor-

ward to interpret. For each species, we compared linear and

second-order polynomial parameterizations for temperature

to test for nonlinear (e.g. mid-range optimal) relationships

between temperature and abundance that are to be expected

in elevational species distributions (McCain, 2009). Aspect

(compass direction) was also evaluated as a predictor of bird

abundance. Models were built using the pscl package

(Jackman, 2011), and model comparison was carried out in

a maximum-likelihood multimodel inference framework

(Burnham & Andersen, 2002).

Unlike previous lapse-rate-climate-change studies, we eval-

uated the performance of the presence/absence component

of our hurdle models by calculating mean prediction error

(leave-one-out cross-validation), kappa statistics and the area

under the received operating characteristic curve, using the

PresenceAbsence package (Freeman & Moisen, 2008). We

converted from probability of presence to binary presence/

absence using the maximized the sum of sensitivity and spec-

ificity as the threshold (Jim�enez-Valverde & Lobo, 2007).

Population size indices and climate-change

projections

We used the abundance ~ temperature relationships from the

hurdle models of each species (Fig. S2) to generate represen-

tative measures of current population size in our ‘study area’

– portions of the national park that lay within 10 km of our

sampling sites (93,908 ha, approximately 42% of the park;

Fig. 1). We did this by taking the sum of the predicted abun-

dance in each forested cell in the study area (see deforestation

projections below). The resulting population size indices are

more informative than range area metrics that assume cells

of equal carrying capacity because abundance ~ range area

relationships are typically nonlinear (Shoo et al., 2005a; Ford-

ham et al., 2012a). In this study, we report population size

indices as well as range area (all suitable cells) results. By

modelling cell-based abundance directly, we did not need to

make the unrealistic assumption of uniform abundance inside

an elevational bin (Shoo et al., 2005a,b; Gasner et al., 2010).

To project the effects of climate change on future popula-

tion size, we overlaid coarse climate projections on the fine-

scale temperature layer for each year from 2010 to 2050. The

climate projections are mean annual temperature layers,

downscaled to 0.5°, that were generated by combining cli-

mate anomalies from an ensemble of regionally skilful global

climate models using MAGICC/SCENGEN (Fordham et al.,

2012b, 2013) and a gridded temperature dataset that was

chosen because no digital elevation model was used in its

preparation (CRU 3.1 TS; http://badc.nerc.ac.uk/home/index.

html). Climate layers were generated for policy (low) and

reference (high) emissions scenarios, which are similar to the

Representative Concentration Pathway scenarios of RCP6

and RCP2.5, respectively (Van Vuuren et al., 2011) (see

Appendix S2 for details). We modelled the effects of global

warming by recalculating the population size indices using

the parameterizations of the original hurdle models, but

based on the new temperature values in each cell for each

year of projection. Our approach assumes full dispersal and

that the abundance ~ temperature relationship remains the

same as observed today (Shoo et al., 2005a; Gasner et al.,

2010).

Deforestation projections

We measured deforestation and modelled the effects of future

deforestation on our case-study species. We used a raster land

cover dataset that was derived from MODIS imagery and cre-

ated to monitor deforestation in Southeast Asia for this analy-

sis (Miettinen et al., 2011). The relevant land cover categories

for Lore Lindu are lowland (sea level to 750 m), lower mon-

tane (750–1500 m) and upper montane (1500 m +) forest (we
collapsed these as ‘forest’), plantation/regrowth (mostly

degraded forest and secondary vegetation in Lore Lindu), and

mosaic and open (collapsed as ‘agriculture’).

The first step was to measure deforestation by comparing

forest cover in the national park in 2000 and 2010. Then,

following Gregory et al. (2012), we used random forest mod-

els to relate observed land use change to five spatial variables:

elevation, slope, distance from the park boundary, distance

from roads and distance from villages (see Appendix S2 for

details). We used the model to project the amount of forest

cover remaining in the park by 2050 based on two scenarios:

(1) a scenario that maintained deforestation at the current

rate and (2) a scenario that assumed increased enforcement

and (arbitrarily) cut the deforestation rate by half. To simu-

late the loss of easily logged sites in this mountainous

national park, the current rate scenario modelled a 50%

decline in the rate of deforestation once 20% of the park’s

forest had been converted. We chose not to project beyond

the year 2050 because of high uncertainty about forest

management in the far future.
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RESULTS

Predictors of abundance

Phylloscopus sarasinorum and Myza sarasinorum preferred

higher elevations and had narrower ranges compared with

Pachycephala sulfuriventer (Fig. 2). The high-elevation spe-

cies also tended to be more common than Pachycephala

sulfuriventer (Fig. 2). The linear parameterization of temper-

ature was the best predictor of Myza sarasinorum abun-

dance, while the second-degree quadratic function of

temperature was the best predictor for the other two spe-

cies (Table 1). There was no support for aspect as a predic-

tor of abundance for any of the study species (Table 1).

The fitted binomial components of the hurdle models

matched the patterns of occupancy (Fig. S3), suggesting

that there was no systematic bias from low detection proba-

bility. Our combination of fitted hurdle-abundance models

and the temperature layer created with the lapse rate sug-

gests our study area could currently support approximately

14,000, 40,000, and 70,000 individuals of Myza sarasinorum,

Phylloscopus sarasinorum and Pachycephala sulfuriventer,

respectively (Table S1). The model validation methods

found 24.5% prediction error, kappa = 0.81 � 0.06, and

AUC = 0.97 for Myza sarasinorum; 43.9% prediction error,

kappa = 0.52 � 0.08, and AUC = 0.82 for Phylloscopus

sarasinorum; and 47.9% prediction error; kappa = 0.42 �
0.08, and AUC = 0.74 for Pachycephala sulfuriventer

(Fig. S4).

Deforestation and climate change

Our analysis indicates that Lore Lindu National Park was

deforested extremely rapidly from 2000 to 2010 (11.8%

cleared), which was faster than Sulawesi as a whole (10.8%;

Miettinen et al., 2011) (Table 2). The most important pre-

dictors of deforestation were elevation, slope and distance

from roads (Fig. S5), with lower rates at higher elevations, in

steeper areas, and further from roads. Our land use-change

models predict that widespread deforestation of the national

park may occur in the coming decades (34–40% of the park

deforested by 2050), even if the deforestation rate is cut by

half (Table 2; Fig. 3). Similarities in predicted forest loss

between the two scenarios were the result of both scenarios

quickly reaching 20% deforestation, and the deforestation

rate consequently being halved (to simulate the loss of easily

logged areas). Deforestation in the study area was slightly

greater than in the national park. This difference probably

resulted because the heavily impacted valley between Mts.

Nokilalaki and Rorekatimbu takes up a disproportionate

amount of the study area compared with the national park

as a whole (Fig. 3; Table 2).

The climate models predicted 0.7–0.9°C of warming in the

region by 2050 for low- and high-emissions scenarios,

respectively. This predicted warming is forecast to cause up

to a 47% decline in range area for the mountaintop Myza

sarasinorum, while deforestation will only invoke minor

declines of <4% (Fig. 4; Table S1). Projected climate change

also had much larger impacts on population size of Myza

Table 1 Table of hurdle model results for abundance of three case-study montane tropical bird species in Sulawesi, Indonesia. Temp

stands for temperature (continuous predictor). Aspect is the cardinal direction faced from the point count (4 nominal categories)

Species Model % DE Evidence ratio DAICc wi df

Myza sarasinorum Temp 37.9 0 0.789 4

Temp + temp2 38.3 4.1 2.8 0.194 6

Temp + aspect 39.5 52.4 7.9 0.015 10

Temp + temp2 + aspect 39.6 344.3 11.7 0.002 12

Null 0 >10,000 89.3 0 2

Aspect 4.4 >10,000 90.3 0 8

Phylloscopus sarasinorum Temp + temp2 19.9 0 0.918 6

Temp + temp2 + aspect 22.1 12.5 5.0 0.074 12

Temp 15.6 116.8 9.5 0.008 4

Temp + aspect 17.5 2522.1 15.7 0 10

Null 0 >10,000 54.8 0 2

Aspect 2.7 >10,000 58.4 0 8

Pachycephala sulfuriventer Temp + temp2 6.4 0 0.956 6

Temp + temp2 + aspect 8.1 24.1 6.4 0.040 12

Null 0 531.8 12.6 0.002 2

Temp 1.2 551.9 12.6 0.002 4

Temp + aspect 4.3 1519.4 14.7 0.001 10

Aspect 2.6 3473.4 16.3 0 8

df indicates the degrees of freedom; DAICc shows the difference between the model AICc (Akaike’s Information Criterion corrected for small sam-

ple sizes) and the minimum AICc in the set of models; AICc weights (wi) show the relative likelihood of model i; %DE is percentage deviance

explained by the model; an evidence ratio (wtop model / wi) of 5 indicates that the top-ranked model is 5 times better supported by the data than

the reference model.
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sarasinorum (50–61% declines) compared with deforestation

(1–2% declines). In the high-elevation Phylloscopus

sarasinorum, predicted climate change and deforestation

caused comparable declines in range area (up to 18% and

15% respectively), but climate change had a much larger

impact on population size (up to a 39% decline compared

with a 7% decline from deforestation). In contrast to the

high-elevation species, in the middle-elevation Pachycephala

sulfuriventer, deforestation caused larger declines in range

area compared with climate change (up to 24% vs. 5%), and

larger declines in population size (up to 19% and 11%,

respectively). When climate change and deforestation are

combined, loss of range area and population size are ampli-

fied, resulting in 19–42% declines in area and 19–62%

declines in population size across species (Fig. 4; Table S1).

In the combined scenarios, population size declines were at

least 13% greater than range area declines in the two high-

elevation species, while differences between range area and

population size declines were negligible for Pachycephala

sulfuriventer (Fig. 4). Halving the deforestation rate did not

appreciably improve outcomes; all differences in population

declines between the two scenarios were <6%.

DISCUSSION

Our results suggest that climate change will have a greater

impact on high-elevation species, whereas deforestation will

be more important for middle-elevation Pachycephala sulfuri-

venter. In high-elevation species, climate change, but not

deforestation, caused population size declines to exceed range

area declines in our analysis. This is because the high-eleva-

tion species are most common at higher elevations, where

habitable areas are projected to shrink disproportionately

from climate change compared with deforestation. In con-

trast, large extents of high-elevation species’ habitat at lower

elevations are predicted to be lost from deforestation, but

the effect on population size is minimized because the spe-

cies are less common at these elevations. Differences between

range area and population size predictions were less marked

for the middle-elevation Pachycephala sulfuriventer because of

the species’ more uniform abundance across elevations. The

mismatches between range area and population size declines

we observed underscore the need for caution when project-

ing extinction risk based on range area predictions alone

(Shoo et al., 2005a; Fordham et al., 2012a).

Table 2 Land cover percentages from 2000 and 2010, and projected changes to 2050 based on halved and current deforestation rates,

across the 40-year projection period. The study area is the portion of the national park within 10 km of sampling points

Land cover 2000 2010

2050 halved

deforestation rate

2050 current

deforestation rate

Lore Lindu National Park

Forest 95.6 83.8 65.9 59.0

Plantation/regrowth 3.1 10.9 27.4 33.7

Agriculture (open/mosaic) 1.2 5.4 6.7 7.3

Study area

Forest 95.8 78.8 64.7 58.8

Plantation/regrowth 3.1 12.6 26.0 31.3

Agriculture (open/mosaic) 1.0 8.6 9.3 9.8

Figure 3 Observed (2000–2010) and
projected (2030–2050) land cover change

in Lore Lindu National Park. Observed

data come from Miettinen et al. (2011).

Land cover-change models were built by

relating forest change from 2000 to 2010

to landscape variables and projecting to

2050 based on the current deforestation

rate as well as half the current rate,

assuming increased enforcement. The

two white sections in the park are

annexed village areas. The black outlines

show the study area.
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Figure 4 Projected percentage population and range area declines from climate change and deforestation for a (a–b) mountaintop

species, Myza sarasinorum, (c–d) high-elevation species, Phylloscopus sarasinorum, and (e–f) middle-elevation species, Pachycephala

sulfuriventer. The three study species are birds that are endemic to Sulawesi, Indonesia. The policy scenario models emissions mitigation;

reference indicates high-emissions climate change; current indicates the current deforestation rate; half indicates reducing the current

deforestation rate by half.
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Figure 4 Continued
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The results indicate that management strategies should be

tailored to species based on their elevational distributions,

with greater emphasis placed on climate adaptation strategies

for high-elevation species and reducing deforestation for

middle-elevation species. Our results agree with other studies

that suggest highland tropical endemic birds (most of which

are currently considered of ‘least concern’ in the IUCN Red

List) are threatened with extinction in the medium term

(Williams et al., 2003; Shoo et al., 2005a; Sekercioglu et al.,

2008; Gasner et al., 2010; La Sorte & Jetz, 2010).

From 2000 to 2010, Sulawesi lost approximately 11% of

its forest, and 12% of Lore Lindu National Park (which hosts

78% of the island’s endemic bird species) was cleared. This

deforestation rate is among the fastest of any Indonesian

protected area so far reported (Linkie et al., 2004; Gaveau

et al., 2009). Our projections indicate approximately 40% of

the park will be deforested by 2050 even if the deforestation

rate is cut by half. Such large-scale deforestation will cause

substantial declines in forest-dependent birds that are ende-

mic to Sulawesi (Sodhi et al., 2005; Maas et al., 2009). Most

deforestation in the region leads to permanent conversion,

so substantial regeneration should not be expected (Clough

et al., 2009). It should be a priority of the Indonesian gov-

ernment and the conservation community to work towards

halting deforestation inside the national park, especially in

the particularly sensitive mid-elevational regions that are

most vulnerable to the synergy of direct habitat loss from

clearing and indirect climate-related shifts (see Forero-Med-

ina et al., 2011a). Maintaining large forested protected areas,

such as Lore Lindu, will likely give species critical scope to

respond to climate change (Beale et al., 2013).

Our lapse-rate modelling approach could under- or over-

estimate the impacts of climate change on tropical birds.

Our approach could over-estimate declines if species shift

slower than predicted by the lapse rate. Studies have docu-

mented moths, reptiles, amphibians and birds shifting

upwards more slowly than the lapse rate (Raxworthy et al.,

2008; Chen et al., 2009; Forero-Medina et al., 2011b), but

other (lower resolution) studies from Asia had mixed results,

with some birds shifting faster than predicted (Peh, 2007;

Harris et al., 2012). We believe our estimates of potential cli-

mate-change impacts are conservative (at least for the high-

emissions scenario) because we limited our forecasts to 2050

and because nonlinear increases in species endangerment

from each degree of warming (because of range contraction)

were predicted in a previous global study (Sekercioglu et al.,

2008).

Our approach made several other assumptions that should

be considered as caveats when interpreting our results. When

modelling population changes from climate change, we

assumed (due to absence of alternatives) full dispersal and

that the current abundance ~ temperature relationship was

maintained over time (Shoo et al., 2005a; Gasner et al.,

2010), despite future climate-induced shifts in range attri-

butes and suitability. In addition, we were only able to test

two predictors of species abundance (temperature and

aspect). In the current situation, temperature explains 6–38%

of the variation in abundance and 11–64% in presence/

absence depending on study species. Our population indices

should be considered upper estimates of true population size

because the sum of the counts was the response variable;

still, this should not strongly affect the percentage changes in

population size (Fig. 4). We were also unable to consider

species interactions, which are important determinants of

species ranges (Jankowski et al., 2010, 2013; Gifford &

Kozak, 2011). Myza sarasinorum likely competes with its ele-

vational replacement species Myza celebensis at lower eleva-

tions (see Supporting Information). In addition, we could

not model vegetation shifts (or lack thereof) from climate

change (Feeley & Silman, 2010), or incorporate explicitly the

potential synergistic feedbacks between threats, both of which

can be important drivers of species distributions. It is also

possible that our study species respond to shorter and moss-

ier trees, which are correlated with elevation. In addition, all

land cover change inference was based on a comparison

between two time periods (2000 and 2010) because no other

years were available.

If rapid deforestation continues inside of Sulawesi’s Lore

Lindu National Park, endemic species will have much less

scope to adapt to the stresses of climate change. Management

efforts should therefore account for the differential pressures

of deforestation and climate change on middle- and high-ele-

vation species. Our results provide important new field data

and forecasts to reinforce previous studies that suggested

highland tropical birds are threatened with substantial popu-

lation declines from climate change. Our study demonstrates

how models can be linked to predict the relative impacts of

fine-scale habitat loss and climate change on population

status in poorly known tropical regions.
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Supporting Information 

Appendix S1. Point count coordinates, elevation, and land-cover. Forested points inside the 

elevational ranges of the study species (Coates & Bishop, 1997; n = 126) were used in the 

analysis (shown in bold). We present these data to promote re-surveys. 

Point Easting Northing Elevation (m) 

Field notes on land-

cover 

Correct 

classification in 

Miettinen et al.’s 

(2011) dataset 

Pakuli 1 829494 9863670 174 mixed agriculture open/mosaic 

Pakuli 2 829748 9863606 204 

scrubby secondary 

growth with bamboo open/mosaic 

Pakuli 3 830009 9863596 292 

disturbed secondary 

forest with some tall 

trees plantation/regrowth 

Pakuli 4 830160 9863389 417 

cacao patch surrounded 

by tall secondary forest open/mosaic 

Pakuli 5 830230 9863136 502 

edge of tall secondary 

forest above cacao forest 

Pakuli 6 830378 9862921 618 

tall secondary forest 

with some agrofrestry forest 

Pakuli 7 830639 9862897 786 primary forest forest 

      

Dali 1 184023 9811929 1659 

riparian, wet, tall forest 

like at Danau Tambing forest 

Dali 2 183794 9811837 1681 

riparian, wet, tall forest 

like at Danau Tambing forest 

Dali 3 183555 9811717 1713 

riparian, wet, tall forest 

like at Danau Tambing forest 

Dali 4 183328 9811629 1772 forest, foot of drier ridge forest 

Dali 5 183084 9811707 1884 

forest, drier ridge, low 

elevation forest 

Dali 6 182864 9811811 1959 forest, drier ridge, low forest 



elevation 

Dali 7 182653 9811655 1996 

many oaks, higher 

elevation, still on ridge forest 

Dali 8 182419 9811555 2077 

many oaks, higher 

elevation, still on ridge forest 

Dali 9 182218 9811412 2200 

high mountain forest, 

very mossy forest 

Dali 10 182145 9811164 2229 

high mountain forest, 

very mossy forest 

Dali 11 182202 9810915 2228 

high mountain forest, 

very mossy forest 

Dali 12 182322 9810689 2245 

high mountain forest, 

very mossy forest 

Dali 13 184220 9812093 1632 forest, foot of drier ridge forest 

Dali 14 184477 9812073 1689 

forest, foot of drier ridge 

with much leaf litter forest 

Dali 15 184623 9812272 1650 

forest, foot of drier ridge 

with much leaf litter forest 

Dali 16 184853 9812398 1626 

last primary forest point 

before entering 

disturbed area forest 

Dali 17 185098 9812440 1597 tall secondary forest forest 

Dali 18 185352 9812486 1567 tall secondary forest forest 

Dali 19 185596 9812535 1532 tall secondary forest forest 

Dali 20 185836 9812437 1483 tall secondary forest forest 

Dali 21 186080 9812335 1433 tall secondary forest forest 

Dali 22 186338 9812345 1357 edge of field (grassy) open/mosaic 

Dali 23 186563 9812220 1350 

in forest patch 

surrounded by field forest 

Dali 24
1
 186826 9812217 1357 grass open/mosaic 

Dali 25 187080 9812179 1350 grass open/mosaic 

Dali 26 187327 9812098 1348 grass open/mosaic 

Dali 27 187582 9812036 1327 grass open/mosaic 

Dali 28 187838 9812011 1295 grass open/mosaic 



      Nokilalaki 1 184603 9866234 823 cacao open/mosaic 

Nokilalaki 2 184372 9866133 854 mixed agriculture open/mosaic 

Nokilalaki 3 184183 9865973 886 mixed agriculture open/mosaic 

Nokilalaki 4 184114 9865733 915 mixed agriculture open/mosaic 

Nokilalaki 5 184102 9865485 943 

mixed agriculture, a few 

remnant trees in riparian 

corridor open/mosaic 

Nokilalaki 6 184158 9865244 973 mixed agriculture open/mosaic 

Nokilalaki 7 184235 9865006 1003 

mixed agricuture and 

grass open/mosaic 

Nokilalaki 8 184256 9864757 1032 

second growth (small 

patch) plantation/regrowth 

Nokilalaki 9 184037 9864644 1063 

primary forest next to 

edge forest 

Nokilalaki 10 183897 9864424 1110 forest forest 

Nokilalaki 11 183656 9864340 1178 forest forest 

Nokilalaki 12 183476 9864187 1210 forest forest 

Nokilalaki 13 183338 9863999 1277 forest forest 

Nokilalaki 14 183233 9863780 1378 forest forest 

Nokilalaki 15 183117 9863563 1486 forest forest 

Nokilalaki 16 183063 9863314 1544 forest forest 

Nokilalaki 17 182975 9863083 1611 forest forest 

Nokilalaki 18 182966 9862831 1674 forest forest 

Nokilalaki 19 183047 9862597 1736 forest forest 

Nokilalaki 20 183060 9862354 1835 forest forest 

Nokilalaki 21 183306 9862303 1915 forest forest 

Nokilalaki 22 183540 9862213 2024 forest forest 

Nokilalaki 23 183685 9862014 2060 forest forest 

Nokilalaki 24 183873 9861849 2052 forest forest 

Nokilalaki 25 184087 9861723 2171 forest forest 

Nokilalaki 26 184199 9861502 2215 forest forest 

Nokilalaki 27 184353 9861304 2278 forest forest 

Nokilalaki 28 184524 9861124 2340 forest forest 



Nokilalaki 29 184722 9860969 2362 forest forest 

      

Rorekatimbu 

1 199662 9853794 1695 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

2 199683 9854041 1761 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

3 199939 9854082 1803 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

4 200115 9854272 1855 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

5 200349 9854366 1883 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

6 200471 9854581 1921 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

7 200430 9854828 1984 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

8 200483 9855076 2027 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

9 200696 9855221 2040 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

10 200597 9855449 2038 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

11 200487 9855675 2072 

tall secondary forest 

along trail with older forest 



forest off trail 

Rorekatimbu 

12 200349 9855887 2055 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

13 200226 9856114 2108 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

14 200111 9856345 2140 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

15 200223 9856565 2160 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

16 200229 9856816 2158 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

17 200363 9857029 2170 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

18 200519 9857229 2224 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

19 200664 9857430 2245 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

20 200643 9857713 2311 

tall secondary forest 

along trail with older 

forest off trail forest 

Rorekatimbu 

21 200614 9857967 2366 mossy primary forest forest 

Rorekatimbu 

22 200546 9858202 2369 mossy primary forest forest 

Rorekatimbu 200568 9858455 2399 mossy primary forest forest 



23 

Rorekatimbu 

24 200638 9858697 2485 mossy primary forest forest 

Rorekatimbu 

25 200486 9858895 2512 mossy primary forest forest 

Rorekatimbu 

26 199420 9853870 1671 

tall old forest, probably 

secondary forest 

Rorekatimbu 

27 199219 9854033 1632 forest forest 

Rorekatimbu 

28 198959 9854013 1585 forest forest 

Rorekatimbu 

29 198799 9854204 1564 scrubby forest plantation/regrowth 

Rorekatimbu 

30 198554 9854277 1539 

secondary scrub, 

younger than R29 plantation/regrowth 

Rorekatimbu 

31 198272 9854222 1531 forest forest 

Rorekatimbu 

32 198059 9854410 1535 forest forest 

Rorekatimbu 

33 197953 9854644 1494 tall secondary forest forest 

Rorekatimbu 

34 197789 9854842 1458 

tall secondary forest, 

forest in better shape 

than at R20 and R30 forest 

Rorekatimbu 

35 197605 9855051 1430 

slightly more disturbed 

than R34 forest 

Rorekatimbu 

36 197491 9855285 1361 tall secondary forest forest 

Rorekatimbu 

37 197285 9855443 1343 tall secondary forest forest 

Rorekatimbu 

38 197050 9855551 1309 tall secondary forest forest 

Rorekatimbu 

39 196822 9855674 1296 

disturbed secondary 

forest plantation/regrowth 



Rorekatimbu 

40 196636 9855891 1264 

secondary, next to first 

farmer's field plantation/regrowth 

      

Rano Rano 1 184505 9814624 1498 

tall forest like at Danau 

Tambing, but lower 

elevation forest 

Rano Rano 2 184238 9814575 1503 

tall forest like at Danau 

Tambing, but lower 

elevation forest 

Rano Rano 3 183977 9814585 1581 ridge forest forest 

Rano Rano 4 183721 9814629 1618 ridge forest forest 

Rano Rano 5 183486 9814742 1646 forest forest 

Rano Rano 6 183294 9814914 1715 forest forest 

Rano Rano 7 183054 9815020 1771 forest forest 

Rano Rano 8 182790 9814963 1844 forest forest 

Rano Rano 9 182538 9814907 1894 forest forest 

Rano Rano 

10 182280 9814878 1919 forest forest 

Rano Rano 

16 179997 9817864 1898 forest forest 

Rano Rano 

17 179765 9817963 1892 forest forest 

Rano Rano 

18 179511 9818012 1860 forest forest 

Rano Rano 

19 179273 9818114 1812 forest forest 

Rano Rano 

20 179036 9818213 1764 

taller, more tropical 

forest forest 

Rano Rano 

21 178790 9818153 1749 forest forest 

Rano Rano 

22 178544 9818229 1722 forest forest 

Rano Rano 

23 178330 9818369 1709 forest forest 



Rano Rano 

24 178161 9818569 1620 forest forest 

Rano Rano 

25 177971 9818749 1570 forest forest 

Rano Rano 

26 177791 9818918 1516 forest forest 

Rano Rano 

27 177593 9819091 1459 forest forest 

Rano Rano 28 177410 9819272 1403 

secondary forest, edge 

of regenerating field plantation/regrowth 

Rano Rano 

29 177269 9819487 1354 forest forest 

Rano Rano 

30 177170 9819721 1282 return to primary forest forest 

Rano Rano 

31 177065 9819953 1283 forest forest 

Rano Rano 

32 176971 9820191 1252 forest forest 

Rano Rano 

33 176887 9820438 1206 forest forest 

Rano Rano 34 173323 9821909 480 

bamboo, scrubby 

woodland above river open/mosaic 

Rano Rano 35 173449 9821678 616 young secondary forest open/mosaic 

Rano Rano 36 173688 9821560 684 secondary forest plantation/regrowth 

Rano Rano 37 173867 9821377 716 a field open/mosaic 

Rano Rano 

38 174075 9821218 768 

0.18 km from RR 39 to 

RR 38 lightly disturbed 

primary forest forest 

Rano Rano 

39 174268 9821046 838 primary forest forest 

Rano Rano 

40 174464 9820878 874 

becoming disturbed, but 

still tall forest; rattan 

trails forest 



Rano Rano 

41 174694 9820755 876 

primary forest nearby; 

some rattan collection forest 

Rano Rano 

42 174944 9820684 884 

primary forest with 

bamboo (continues until 

RR 41) forest 

Rano Rano 43 175194 9820614 917 scruby area near forest plantation/regrowth 

Rano Rano 

44 175400 9820445 979 primary forest forest 

Rano Rano 

45 175658 9820423 993 primary forest forest 

Rano Rano 

46 175798 9820644 1034 primary forest forest 

Rano Rano 

47 176023 9820778 1042 forest forest 

Rano Rano 

48 176283 9820802 1108 forest forest 

Rano Rano 

49 176544 9820765 1159 forest forest 

Rano Rano 

50 176702 9820588 1220 forest forest 

1
Points Dali 24-28, Rorekatimbu 21-25 are outside of the national park. 

  

  



Appendix S2. Supplementary Methods 

Details on study species 

Myza sarasinorum (white-eared myza) is a medium-sized honeyeater that inhabits montane 

forest and mossy elfin forest (1700–2800 m), especially on ridges, where it feeds on nectar and 

gleans insects from the understory to the canopy (Coates & Bishop, 1997; Higgins et al., 2008). 

M. sarasinorum is replaced by the smaller, less conspicuous, M. celebensis (dark-eared myza) at 

lower altitudes. M. sarasinorum is a pugnacious defender of flowers (Coates & Bishop, 1997); 

we postulate that M. celebensis would be subordinate to M. sarasinorum. Phylloscopus 

sarasinorum (Sulawesi leaf-warbler) inhabits the midstory and canopy of montane forest where 

it gleans and hover-gleans small arthropods, often in association with mixed-species foraging 

flocks (Coates & Bishop, 1997; Alström et al., 2006). Phylloscopus sarasinorum is found from 

600 to 3500 m. There are no other resident Phylloscopus on Sulawesi. Pachycephala 

sulfuriventer (sulphur-bellied whistler), is found in upland forest where it forages for insects 

along branches and tree trunks from the understory to the canopy (Coates & Bishop, 1997; 

Boles, 2007). P. sulfuriventer is found from sea level to 2500 m, mainly above 800 m. There are 

no other Pachycephala on Sulawesi. Coracornis raveni (maroon-backed whistler) is an 

inconspicuous inhabitant of the lower levels of montane forest from 1500–2300 m. There is no 

information on potential competitive interactions between C. raveni and P. sulfuriventer. None 

of the study species’ nests have been described, and none are threatened with extinction (Alström 

et al., 2006; Boles, 2007; Higgins et al., 2008; BirdLife International, 2013).  

 

Abundance models 

We used the Poisson component of the hurdle abundance model for each species to check for 

overdispersion. The residual deviance divided by the degrees of freedom from the top-ranked 

Poisson model for each species was close to one (0.6–1.3 for the three study species). This 

indicated our data were not substantially overdispersed (Crawley, 2007), and Poisson errors were 

supported over negative binomial (Potts & Elith, 2006).  

 



Land-cover change modeling 

Miettinen et al. (2012) classified land-cover in Southeast Asia in 2000 and 2010 at a 250 m 

resolution. We evaluated the accuracy of the land-cover data in our study areas by comparing the 

land-cover type we observed at each bird sampling point to the layer classification. We found the 

layer had 87% accuracy along our 149 points, which is similar to the overall accuracy across the 

region (85%; Miettinen et al., 2012; Table S2). 

In the land-cover projections, deforestation represented the permanent conversion of 

forest to degraded (plantation/regrowth) or cleared (open/mosaic) land. We did not model forest 

regeneration because conversion is usually permanent in Central Sulawesi (Weber et al., 2007; 

Clough et al., 2009). Deforestation was modeled as an annual transition matrix, projected as a 

discrete-transition Markov Chain (Takada et al., 2010). To identify which raster cells would be 

changed at each time step, and to which class they would change, we used 2010 land-cover 

prediction probabilities from random forest models relating land-cover change to the spatial 

variables mentioned above (Liaw & Wiener, 2002; Hijmans & van Etten, 2012). The models 

assigned each cell a probability of class membership in each land-cover class calculated as the 

proportion of iterations in which they were assigned to that class. A cell’s predicted 2010 land-

cover class is that which has the highest probability of class membership. We calculated each 

cell's vulnerability to change as the maximum probability of membership to any other land-cover 

class (Eastman et al., 1995). For each time step, the land-cover change model calculated how 

many and which raster cells to change, based on the deforestation projections and cell 

vulnerabilities, and then altered their land-cover class to that with the second highest probability 

of class membership.  

 

Lowland temperature, adiabatic lapse rate, and climate modeling 

The closest lowland weather station with the most complete recent observations was the GHCN 

Gorontalo station (ID number 50397048000, 0.52° N, 123.07° E, elevation 2 m, 

http://www.ncdc.noaa.gov/ghcnm/v3.php station). We calculated annual mean temperature from 

2007–2010 at the station.  

The best temperature records for Lore Lindu National Park come from two 

meteorological research stations. We calculated the lapse rate by relating temperate to elevation 



at the 417 m elevation Gimpu meteorological station (c. 1.6° S, 120.1°E; mean annual 

temperature from 2002–2006; Schwendenmann et al., 2010), and the 1,400 m elevation Bariri 

meteorological tower (c. 1.7° S, 120.3°E; mean annual temperature from six months of 

measurements in 2011–2012). This calculation resulted in a lapse rate of 6.1°C of temperature 

loss per 1000 m of elevation gained. This estimate is similar to lapse rates calculated globally 

that range from 5–6°C (Sarmiento, 1986; Smith & Young, 1987; Kitayama, 1992; Gaffen et al., 

2000; Bush et al., 2004) and lapse rates calculated in Sulawesi from shorter temperature records 

(7 °C on Mt. Rantemario from approximately five days of measurements (Whitten et al., 2002, 

pers. comm.) and ~ 6.8 °C in the Mt. Nokilalaki region from two months of measurements 

(Musser, 1982)).  

We modelled the effect of climate change on abundance for each year from 2010–2050 

according to two emissions scenarios: a no-climate-policy reference scenario (no greenhouse gas 

emission stabilization; MiniCAM Ref.) and a corresponding policy (stabilization) scenario 

(MiniCAM, Level 1) designed to stabilize at an equivalent CO2 concentration of 450 ppm 

(Clarke et al., 2007; Wigley et al., 2009). Seven regionally skillful Atmosphere-Ocean General 

Circulation Models (BCCRBCM2, CCCMA–31, CSIR0–30, GFDLCM20, MIROCMED, 

CCSM–30 and UKHADGEM) were used to generate an annual time series of multi-model 

averaged climate projections using MAGICC/SCENGEN (Fordham et al., 2012). These were 

downscaled to a grid cell resolution of 0.5° (approximately 50 km) using the “change factor” 

method, where the low-resolution multi-model averaged predicted change in temperature was 

added directly to a higher resolution baseline observed climatology − an interpolated temperature 

dataset that was developed without the support of a digital elevation model (CRU 3.1 TS; 

http://badc.nerc.ac.uk/home/index.html). 

 

 

  



Supplementary Figures 

 

Figure S1. Elevation and 2010 forest cover of (a) Lore Lindu National Park and (b) the study 

area (within 10 km of sampling points). Cells are approximately 0.85 ha; forest cover data come 



from Miettinen et al. (2011). (c) Sampling effort by elevation within the study area (one 

sampling session; hatched bars). 

  



 

 

 

 



 

Fig. S2. Relationships between temperature and abundance from fitted hurdle models. (a) Myza 

sarasinorum, (b) Phylloscopus sarasinorum, (c) Pachycephala sulfuriventer. The linear 

parameterization of temperature was the best predictor of Myza sarasinorum abundance, while 

the second degree quadratic function of temperature was the best predictor for the other two 

species. 

 

 

 

  



 

 

 



 

Figure S3. Plots comparing probability of occupancy (from occupancy models from three 

sampling sessions) to probability of presence from the binomial component of hurdle models. (a) 

Myza sarasinorum, (b) Phylloscopus sarasinorum, (c) Pachycephala sulfuriventer. 





 

Figure S4. Plots of receiver operating characteristic curves showing predictive ability of the 

binomial part of hurdle models for (A) Myza sarasinorum, (B) Phylloscopus sarasinorum, (C) 

Pachycephala sulfuriventer at different discrimination thresholds. The gray line shows a random 

prediction where the model is unable to distinguish between occupied and unoccupied sites. The 

area under the receiver operating characteristic curve (AUC) is given. 

  



(a) 

 

(b) 

 

Figure S5. Variable importance plots from random forest models that predicted deforestation at 

(A) the current rate of deforestation and (B) half the current rate. The most important variables 



are displayed at the top of the plot. dem stands for elevation, roadsdist stands for distance from 

roads, popsdist stands for distance from villages, parkdist stands for distance from park 

boundary. Mean decrease accuracy measures how much the inclusion of a predictor in the model 

reduces classification error, while mean decrease Gini measures the role a predictor variable 

plays in partitioning the data into defined classes. See Liaw and Wiener (2002) for more details. 

 

  



Supplementary Tables 

Table S1. Projected reductions in the population size index (number of birds in the study area) 

and range area (hectares) by 2050 for the three study species under climate and land-use change 

scenarios. 

    climate change deforestation climate change + deforestation 

Species 
baseline 

(2010) 
policy reference 

half 

rate 

current 

rate 

half + 

policy 

half + 

reference 

current 

+ 

policy 

current + 

reference 

Population size (number of birds)  

Myza 

sarasinorum 
13,917 6,917 5,437 13,757 13,641 6,855 5,391 6,813 5,360 

Phylloscopus 

sarasinorum 
38,486 26,637 23,517 36,732 35,751 25,654 22,704 25,080 22,222 

Pachycephala 

sulfuriventer 
71,179 65,392 63,168 61,846 57,728 58,011 56,394 54,657 53,280 

Habitat area (hectares) 

Myza 

sarasinorum 
17,648 11,071 9,420 17,306 17,067 10,960 9,334 10,850 9,256 

Phylloscopus 

sarasinorum 
60,558 54,118 51,660 53,076 49,846 48,330 46,699 45,795 44,426 

Pachycephala 

sulfuriventer 
72,026 69,539 68,573 59,816 54,476 58,585 58,050 53,845 53,532 

 

  



Table S2. Land-cover classification errors in Miettinen et al.’s (2011) dataset at our 149 

sampling points. There were 19 errors (87% accuracy). 

Type of error 

classified as forest; 

should have been non-

forest 

classified as non-

forest; should have 

been forest 

classified as 

agriculture; should 

have been regrowth 

classified as regrowth; 

should have been 

agriculture 

Number of 

point counts 7 9 1 2 
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