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ABSTRACT

Aim Deforestation and climate change are two of the most serious threats to
tropical birds. Here, we combine fine-scale climatic and dynamic land cover
models to forecast species vulnerability in rain forest habitats.

Location Sulawesi, Indonesia.

Methods We sampled bird communities on four mountains across three sea-
sons in Lore Lindu National Park, Sulawesi, Indonesia (a globally important
hotspot of avian endemism), to characterize relationships between elevation
and abundance. Deforestation from 2000 to 2010 was quantified, and predic-
tors of deforestation were identified. Future forest area was projected under
two land use change scenarios — one assuming current deforestation rates and
another assuming a 50% reduction in deforestation. A digital elevation model
and an adiabatic lapse rate were used to create a fine-scale map of temperature
in the national park. Then, the effects of climate change were projected by
fitting statistical models of species abundance as a function of current tempera-
ture and forecasting future abundance based on warming from low- and high-
emissions climate change.

Results The national park lost 11.8% of its forest from 2000 to 2010. Model-
based projections indicate that high-elevation species (white-eared myza Myza
sarasinorum and Sulawesi leaf-warbler Phylloscopus sarasinorum) might be buf-
fered from deforestation because their ranges are isolated from human settlement,
but these species may face steep population declines from climate change (by as
much as 61%). The middle-elevation sulphur-bellied whistler Pachycephala sulfu-
riventer is predicted to undergo minor declines from climate change (8-11%
reduction), while deforestation is predicted to cause larger declines of 13—19%.

Main conclusions The biological richness and rapid deforestation now occur-
ring inside the national park emphasize the need for increased enforcement,
while our modelling suggests that climate change is most threatening to high-
elevation endemics. These findings are likely applicable to other highland tropi-
cal sites where deforestation is encroaching from below and climate change is
stressing high-elevation species from above.
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INTRODUCTION

Tropical mountain ranges are critical centres of avian ende-
mism, with about 10% of the world’s bird species being
restricted to tropical highlands (>500-m elevation; Harris
et al., 2011). Steep slopes and high elevations reduce the
pressure of anthropogenic habitat degradation and other
threats such as hunting on many of these species, resulting
in most highland tropical birds being considered of ‘least
concern’ (Sekercioglu et al., 2008; BirdLife International,
2013). Rapid habitat loss means that the bulk of TUCN-
listed species in tropical regions are found in the lowlands,
close to the concentration of human activity (e.g. Brooks
et al., 1997). While highland species have been buffered
from habitat loss in the past, the recent growth of human
populations and the demands of economic development
have put increasing pressure on higher-elevation habitats
(Soh et al.,, 2006). In coming decades, climate change also
threatens to reduce the habitat available for montane species
(La Sorte & Jetz, 2010; Noske, 2010), with many highland
tropical species facing climate-change-induced range shifts
combined with habitat contraction (Pounds et al., 2005;
Peh, 2007; Forero-Medina et al., 2011a,b; Harris et al., 2012;
Sekercioglu et al., 2012). This is a particularly serious con-
cern for species with few adaptation options, such as moun-
taintop endemics and those with narrow elevational ranges
(Colwell et al., 2008). Worryingly, the impacts of habitat
loss, climate change and other extinction drivers such as
invasive species are likely to interact synergistically (Brook
et al., 2008).

Given this context, studies that forecast species extirpa-
tion vulnerability due to habitat loss, climate change and
their interaction are urgently needed from the tropics. Two
previous analyses used coarse land cover scenarios and an
adiabatic lapse rate (estimate of temperature loss with
increasing elevation) to estimate the vulnerability of the
world’s birds to climate change and habitat loss, and found
that approximately 500 species (5% of the global total) may
go extinct by 2100 under a mid-range warming projection
by global climate models (Jetz et al, 2007; Sekercioglu
et al., 2008). Yet few analyses have projected spatially expli-
cit estimates of tropical deforestation (Soares-Filho et al.,
2006; Cannon et al., 2007; Bird et al., 2012; Green et al.,
2013; Rosa et al., 2013), and fewer still have combined fine-
scale land cover and climate models to produce regional
projections of extirpation vulnerability (Gregory et al,
2012).

Southeast Asia’s combination of biological richness, varied
landscapes and severe on-going anthropogenic impacts
makes it a clear candidate for exploring the influence of hab-
itat loss and climate change on tropical biodiversity. South-
east Asia has one of the highest concentrations of endemic
species in the world, as a result of the region’s numerous
islands, tectonic history and fluctuating sea levels (Sodhi &
Brook, 2006). Unfortunately, regional deforestation is so
rapid that many species may lose the majority of their range

in the next 20 years (Bradshaw et al., 2009; Miettinen et al.,
2011). Within Southeast Asia, the Sulawesi region of
Indonesia is of special interest because it is among the
world’s richest hotspots of avian endemism, with 42 species
found nowhere else (Coates & Bishop, 1997). Despite this
diversity, Sulawesi is ornithologically one of the least studied
areas in the world, with higher elevations particularly poorly
sampled, and as a result, new bird taxa are still regularly
described (e.g. Madika et al., 2011).

In this study, we combine new data from the field with
global climate and dynamic landscape models to forecast vul-
nerability of endemic birds in Lore Lindu National Park,
Sulawesi. Although Lore Lindu is one of the island’s most
biodiverse reserves, it has suffered from rapid human
encroachment over the last decade (Cannon et al., 2007). We
used three middle- and high-elevation endemic birds as case-
study species to explore the potential effects of habitat loss
and climate change on Lore Lindu’s birds. Given that habitat
loss is pervasive at lower elevations in Sulawesi (Cannon
et al., 2007), and the forecasts of detrimental impacts in pre-
vious climate change studies (e.g. Colwell ef al., 2008), we
hypothesized that: (1) habitat loss would threaten middle-
elevation species more than high-elevation species; and (2)
climate change would particularly threaten narrow-ranged
high-elevation species.

METHODS

Study site

Lore Lindu National Park covers 2290 km® of Central
Sulawesi and is home to approximately 78% of Sulawesi’s
endemic bird species (Coates & Bishop, 1997; Lee et al,
2007), making it one of the island’s most important pro-
tected areas (Fig. 1). The national park is under considerable
pressure from an increasing human population due to
migration from more populous parts of Indonesia, expansion
of cacao agriculture and illegal logging (Weber et al., 2007;
Clough et al., 2009). Most of the park lies above 1000-m ele-
vation (Fig. S1 in Supporting Information), and 96% of the
park was covered with primary forest in 2000.

Field sampling

We collected avian occurrence data on Mt. Nokilalaki (825—
2365 m; S 1°15.3', E 120° 10’), Mt. Rorekatimbu (1265—
2525 m; S 1° 17/, E 120° 19'), Mt. Dali (1295-2280 m; S 1°
43', E 120° 9') and Mt. Rano Rano (480-1920 m; S 1° 39/, E
120° 7') (Fig. 1). These four peaks are among the tallest
mountains in Central Sulawesi and are located at opposite
ends of Lore Lindu, providing broad coverage of elevations
and regions of the park. Our sampling effort was representa-
tive of the distribution of elevations in the park with forested
middle elevations most thoroughly sampled (Fig. S1). In
Appendix SI, we list coordinates of sampling sites and notes
on their land cover in 2010. Our study species are much less
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Figure 1 Location of Lore Lindu
National Park and our study area and
sampling sites. The two holes in the
national park are annexed village areas.
N indicates Mt. Nokilalaki, R indicates
Mt. Rorekatimbu, D indicates Mt. Dali,
and RR indicates Mt. Rano Rano.

common or absent below 1000 m, so our focus on higher
elevations should not substantially impact our results.

We sampled bird communities with 10-minute duration,
50-m-radius point counts, separated by 250 horizontal
metres, along elevational gradients on mountain trails and
roads (Ralph et al, 1995). We sampled 149 points, 126 of
which were forested and within the elevational ranges of our
three study species (Appendix S1). When sampling along
roads (only done on parts of Mt. Rorekatimbu), we entered
the forest ~ 50 m from the road to do the point counts. We
controlled for seasonal variation in abundance by surveying
in three seasons (September—November 2009, May—June
2010 and January—February 2011). Each point was sampled
once in each season (points were visited three times in total).
Co-author D.D.P., who has >10 years’ experience identifying
Central Sulawesi birds by sight and sound, was the primary
observer in all surveys. We practiced distance estimation with
audio playback and a measuring tape to make the aural
50 m estimate more accurate. A Nikon Forestry 550 laser
range finder was used to check visual distance estimates.

Diversity and Distributions, 1-13, © 2014 John Wiley & Sons Ltd
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Variability in detection may affect abundance estimates
during point counts (Tingley & Beissinger, 2009). We maxi-
mized detection by only censusing birds in the morning on
clear days with little wind (from dawn to 10:30). The poten-
tial for bias from differing detection probabilities along the
altitudinal gradient was evaluated by converting counts to
presence/absence data and modelling the probability of occu-
pancy along the gradient in package unmarked in R v2.14.1
(Fiske & Chandler, 2011; R Development Core Team, 2011).
Given that avian detectability may vary by season, we com-
pared occupancy models that incorporated seasonal variation
in detectability to those that modelled the effect of tempera-
ture on occupancy alone: W(temperature)p(.),¥(.)p(season),
W (temperature)p(season), and W(.)p(.). Temperature was
calculated from elevation using an adiabatic lapse rate, and
season was a categorical variable that represented our three
sampling sessions. The W(temperature)p(season) model was
top-ranked for all study species (WAIC of 0.54, 1.0, and 0.92
for Myza sarasinorum, Phylloscopus sarasinorum and
Pachycephala  sulfuriventer, respectively). This occupancy
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relationship was compared with probability of presence from Myza sarasinorum

a binomial model that related temperature to presence/ 16—

absence. We postulated that if occupancy (which explicitly

accounts for detection probability) and probability of pres- 141~

ence were similarly related to temperature, then there was no

systematic bias stemming from low detection probability 12

(Tingley & Beissinger, 2009). 10 _
Case-study species 08

For case-study species, we selected three locally common 06| o
endemic birds that differed in their altitudinal habitat prefer-

ences: middle-elevation Pachycephala sulfuriventer (sulphur- 0.4 —

bellied whistler), high-elevation Phylloscopus sarasinorum -9
(Sulawesi leaf-warbler) and mountaintop Myza sarasinorum 0.2

(white-eared myza) (Fig. 2; see Supporting Information for

more natural history information). We refer to the moun- 0.0 _“—M'—'——'

taintop Myza sarasinorum and high-elevation Phylloscopus 0 500 1000 1500 2000 2500 3000

sarasinorum collectively as ‘high-elevation’ species. The three .
Phylloscopus sarasinorum

species were chosen, in part, because they are rarely or never 1.6 — _
seen in non-forest habitats in Lore Lindu (our data; Sodhi
et al., 2005; Maas et al., 2009). o 14k
e
, a3 12
Modelling abundance 5
We characterized the current relationship between tempera- 2_ 1.0 - ®
ture and abundance and forecast the potential effects of 3
climate change on bird abundance. Temperature alone is a 5 08—
strong climatic driver of bird distributions in humid tropical g o6
regions (e.g. Shoo efal, 2005a; Forero-Medina et al, c
2011b). We modelled temperature as a function of elevation 2 04l A1
using an adiabatic lapse rate conversion. This is because tem- A
perature is strongly correlated with elevation on tropical % 0.2 E
mountains (Smith & Young, 1987; Bush et al., 2004), chang-
ing rapidly over small horizontal distances (Raxworthy et al., 0.0 M 1 ® J
2008), and because fine-scale spatial climate layers for 0 500 1000 1500 2000 2500 3000
Sulawesi are highly uncertain or unavailable at resolutions )
below that of global climate models (Hijmans et al., 2005). 16— Pachycephala sulfuriventer
We used a locally measured lapse rate (6.1°C lost per 1000-
m elevation gained) to convert a fine-scale digital elevation 14 -
model (30 arc seconds, srtm.csi.cgiar.org) into an average T
annual temperature layer of the same resolution. This was 1.2
carried out by relating temperature from a lowland weather
station to elevation via the lapse rate (see Appendix S2 for 1.0
details).
We then used statistical models to relate temperature to 0.8 -
abundance. We first converted bird abundance estimates ®
from birds per 0.79 ha (the area encompassed by 50-m point 06~
count circles) to birds per 0.85 ha (30-arc-second cell in 04 E
Figure 2 Abundance distributions of study species along 02+
elevational gradients on four mountains in Central Sulawesi.
Average abundance per point count from three sampling 0.0 L L @ |
sessions £ standard errors are shown. Data from all sample 0 500 1000 1500 2000 2500 3000
points are shown including point count surveys where the Elevation (m)

species was not recorded.
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central Sulawesi). Given the strong dependence of the study
species on forest habitats, we set cells without forest as
unsuitable. For the response variable, we considered using
the mean of the counts from the three sampling sessions or
the sum of the counts. We chose to use the sum of the
counts because 47-75% of the counts were zero, depending
on study species, and rounded means would cause a strong
downwards bias in abundance estimates. For example, birds
were frequently recorded singly in only one sampling session,
which gives a mean abundance of 0.33, which rounds to
zero. Nonetheless, the sum of the counts should be viewed
as an upward estimate of abundance. We analysed the zero-
inflated data using a two-step hurdle modelling approach.
Firstly, we modelled the probability of presence, assuming a
binomial distribution and therefore defining suitable habitats
where this probability is non-null. Then, we modelled the
abundance in suitable habitats only, using a truncated
Poisson distribution (Potts & Elith, 2006; Jackman, 2011).
Hurdle models often out-perform other zero-inflated regres-
sion approaches based on integrated distributions (Potts &
Elith, 2006; Zeileis et al., 2008) and are relatively straightfor-
ward to interpret. For each species, we compared linear and
second-order polynomial parameterizations for temperature
to test for nonlinear (e.g. mid-range optimal) relationships
between temperature and abundance that are to be expected
in elevational species distributions (McCain, 2009). Aspect
(compass direction) was also evaluated as a predictor of bird
abundance. Models were built using the pscl package
(Jackman, 2011), and model comparison was carried out in
a maximum-likelihood multimodel inference framework
(Burnham & Andersen, 2002).

Unlike previous lapse-rate-climate-change studies, we eval-
uated the performance of the presence/absence component
of our hurdle models by calculating mean prediction error
(leave-one-out cross-validation), kappa statistics and the area
under the received operating characteristic curve, using the
PresenceAbsence package (Freeman & Moisen, 2008). We
converted from probability of presence to binary presence/
absence using the maximized the sum of sensitivity and spec-
ificity as the threshold (Jiménez-Valverde & Lobo, 2007).

Population size indices and climate-change
projections

We used the abundance ~ temperature relationships from the
hurdle models of each species (Fig. S2) to generate represen-
tative measures of current population size in our ‘study area’
— portions of the national park that lay within 10 km of our
sampling sites (93,908 ha, approximately 42% of the park;
Fig. 1). We did this by taking the sum of the predicted abun-
dance in each forested cell in the study area (see deforestation
projections below). The resulting population size indices are
more informative than range area metrics that assume cells
of equal carrying capacity because abundance ~ range area
relationships are typically nonlinear (Shoo et al., 2005a; Ford-
ham et al., 2012a). In this study, we report population size
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indices as well as range area (all suitable cells) results. By
modelling cell-based abundance directly, we did not need to
make the unrealistic assumption of uniform abundance inside
an elevational bin (Shoo et al., 2005a,b; Gasner et al., 2010).

To project the effects of climate change on future popula-
tion size, we overlaid coarse climate projections on the fine-
scale temperature layer for each year from 2010 to 2050. The
climate projections are mean annual temperature layers,
downscaled to 0.5°, that were generated by combining cli-
mate anomalies from an ensemble of regionally skilful global
climate models using MAGICC/SCENGEN (Fordham et al.,
2012b, 2013) and a gridded temperature dataset that was
chosen because no digital elevation model was used in its
preparation (CRU 3.1 TS; http://badc.nerc.ac.uk/home/index.
html). Climate layers were generated for policy (low) and
reference (high) emissions scenarios, which are similar to the
Representative Concentration Pathway scenarios of RCP6
and RCP2.5, respectively (Van Vuuren et al, 2011) (see
Appendix S2 for details). We modelled the effects of global
warming by recalculating the population size indices using
the parameterizations of the original hurdle models, but
based on the new temperature values in each cell for each
year of projection. Our approach assumes full dispersal and
that the abundance ~ temperature relationship remains the
same as observed today (Shoo et al, 2005a; Gasner et al.,
2010).

Deforestation projections

We measured deforestation and modelled the effects of future
deforestation on our case-study species. We used a raster land
cover dataset that was derived from MODIS imagery and cre-
ated to monitor deforestation in Southeast Asia for this analy-
sis (Miettinen ef al., 2011). The relevant land cover categories
for Lore Lindu are lowland (sea level to 750 m), lower mon-
tane (750-1500 m) and upper montane (1500 m +) forest (we
collapsed these as ‘forest’), plantation/regrowth (mostly
degraded forest and secondary vegetation in Lore Lindu), and
mosaic and open (collapsed as ‘agriculture’).

The first step was to measure deforestation by comparing
forest cover in the national park in 2000 and 2010. Then,
following Gregory et al. (2012), we used random forest mod-
els to relate observed land use change to five spatial variables:
elevation, slope, distance from the park boundary, distance
from roads and distance from villages (see Appendix S2 for
details). We used the model to project the amount of forest
cover remaining in the park by 2050 based on two scenarios:
(1) a scenario that maintained deforestation at the current
rate and (2) a scenario that assumed increased enforcement
and (arbitrarily) cut the deforestation rate by half. To simu-
late the loss of easily logged sites in this mountainous
national park, the current rate scenario modelled a 50%
decline in the rate of deforestation once 20% of the park’s
forest had been converted. We chose not to project beyond
the year 2050 because of high uncertainty about forest
management in the far future.
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RESULTS

Predictors of abundance

Phylloscopus  sarasinorum and Myza sarasinorum preferred
higher elevations and had narrower ranges compared with
Pachycephala sulfuriventer (Fig. 2). The high-elevation spe-
cies also tended to be more common than Pachycephala
sulfuriventer (Fig. 2). The linear parameterization of temper-
ature was the best predictor of Myza sarasinorum abun-
dance, while the second-degree quadratic function of
temperature was the best predictor for the other two spe-
cies (Table 1). There was no support for aspect as a predic-
tor of abundance for any of the study species (Table 1).
The fitted binomial components of the hurdle models
matched the patterns of occupancy (Fig. S3), suggesting
that there was no systematic bias from low detection proba-
bility. Our combination of fitted hurdle-abundance models
and the temperature layer created with the lapse rate sug-
gests our study area could currently support approximately
14,000, 40,000, and 70,000 individuals of Myza sarasinorum,
Phylloscopus  sarasinorum and  Pachycephala  sulfuriventer,
respectively (Table S1). The model validation methods
found 24.5% prediction error, kappa = 0.81 £ 0.06, and
AUC = 0.97 for Myza sarasinorum; 43.9% prediction error,
kappa = 0.52 £+ 0.08, and AUC = 0.82 for Phylloscopus
sarasinorum; and 47.9% prediction error; kappa = 0.42 +
0.08, and AUC =0.74 for Pachycephala
(Fig. S4).

sulfuriventer

Deforestation and climate change

Our analysis indicates that Lore Lindu National Park was
deforested extremely rapidly from 2000 to 2010 (11.8%
cleared), which was faster than Sulawesi as a whole (10.8%j;
Miettinen et al., 2011) (Table 2). The most important pre-
dictors of deforestation were elevation, slope and distance
from roads (Fig. S5), with lower rates at higher elevations, in
steeper areas, and further from roads. Our land use-change
models predict that widespread deforestation of the national
park may occur in the coming decades (34—40% of the park
deforested by 2050), even if the deforestation rate is cut by
half (Table 2; Fig. 3). Similarities in predicted forest loss
between the two scenarios were the result of both scenarios
quickly reaching 20% deforestation, and the deforestation
rate consequently being halved (to simulate the loss of easily
logged areas). Deforestation in the study area was slightly
greater than in the national park. This difference probably
resulted because the heavily impacted valley between Mts.
Nokilalaki and Rorekatimbu takes up a disproportionate
amount of the study area compared with the national park
as a whole (Fig. 3; Table 2).

The climate models predicted 0.7-0.9°C of warming in the
region by 2050 for low- and high-emissions scenarios,
respectively. This predicted warming is forecast to cause up
to a 47% decline in range area for the mountaintop Myza
sarasinorum, while deforestation will only invoke minor
declines of <4% (Fig. 4; Table S1). Projected climate change
also had much larger impacts on population size of Myza

Table 1 Table of hurdle model results for abundance of three case-study montane tropical bird species in Sulawesi, Indonesia. Temp
stands for temperature (continuous predictor). Aspect is the cardinal direction faced from the point count (4 nominal categories)

Species Model % DE Evidence ratio AAIC, w; df
Myza sarasinorum Temp 37.9 0 0.789 4
Temp + temp” 38.3 4.1 2.8 0.194 6
Temp + aspect 39.5 52.4 7.9 0.015 10
Temp + temp® + aspect 39.6 344.3 11.7 0.002 12
Null 0 >10,000 89.3 0 2
Aspect 4.4 >10,000 90.3 0 8
Phylloscopus sarasinorum Temp + temp* 19.9 0 0.918 6
Temp + temp2 + aspect 22.1 12.5 5.0 0.074 12
Temp 15.6 116.8 9.5 0.008 4
Temp + aspect 17.5 2522.1 15.7 0 10
Null 0 >10,000 54.8 0 2
Aspect 2.7 >10,000 58.4 0 8
Pachycephala sulfuriventer Temp + temp* 6.4 0 0.956 6
Temp + temp2 + aspect 8.1 24.1 6.4 0.040 12
Null 0 531.8 12.6 0.002 2
Temp 1.2 551.9 12.6 0.002 4
Temp + aspect 4.3 1519.4 14.7 0.001 10
Aspect 2.6 3473.4 16.3 0 8

df indicates the degrees of freedom; AAIC, shows the difference between the model AIC, (Akaike’s Information Criterion corrected for small sam-

ple sizes) and the minimum AIC, in the set of models; AIC. weights (w;) show the relative likelihood of model i; %DE is percentage deviance

explained by the model; an evidence ratio (W moder / W) of 5 indicates that the top-ranked model is 5 times better supported by the data than

the reference model.

Diversity and Distributions, 1-13, © 2014 John Wiley & Sons Ltd
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Table 2 Land cover percentages from 2000 and 2010, and projected changes to 2050 based on halved and current deforestation rates,
across the 40-year projection period. The study area is the portion of the national park within 10 km of sampling points

2050 halved 2050 current

Land cover 2000 2010 deforestation rate deforestation rate
Lore Lindu National Park
Forest 95.6 83.8 65.9 59.0
Plantation/regrowth 3.1 10.9 27.4 33.7
Agriculture (open/mosaic) 1.2 5.4 6.7 7.3
Study area
Forest 95.8 78.8 64.7 58.8
Plantation/regrowth 3.1 12.6 26.0 31.3
Agriculture (open/mosaic) 1.0 8.6 9.3 9.8
2000 observed 2010 observed 2050 current rate 2050 half rate

Figure 3 Observed (2000-2010) and
projected (2030-2050) land cover change
in Lore Lindu National Park. Observed
data come from Miettinen et al. (2011).
Land cover-change models were built by
relating forest change from 2000 to 2010
to landscape variables and projecting to
2050 based on the current deforestation
rate as well as half the current rate,
assuming increased enforcement. The
two white sections in the park are
annexed village areas. The black outlines
show the study area.

sarasinorum (50-61% declines) compared with deforestation
(1-2% the high-elevation  Phylloscopus
sarasinorum, predicted climate change and deforestation

declines). In
caused comparable declines in range area (up to 18% and
15% respectively), but climate change had a much larger
impact on population size (up to a 39% decline compared
with a 7% decline from deforestation). In contrast to the
high-elevation species, in the middle-elevation Pachycephala
sulfuriventer, deforestation caused larger declines in range
area compared with climate change (up to 24% vs. 5%), and
larger declines in population size (up to 19% and 11%,
respectively). When climate change and deforestation are
combined, loss of range area and population size are ampli-
fied, resulting in 19-42% declines in area and 19-62%
declines in population size across species (Fig. 4; Table S1).
In the combined scenarios, population size declines were at
least 13% greater than range area declines in the two high-
elevation species, while differences between range area and
population size declines were negligible for Pachycephala
sulfuriventer (Fig. 4). Halving the deforestation rate did not
appreciably improve outcomes; all differences in population
declines between the two scenarios were <6%.

Diversity and Distributions, 1-13, © 2014 John Wiley & Sons Ltd
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DISCUSSION

Our results suggest that climate change will have a greater
impact on high-elevation species, whereas deforestation will
be more important for middle-elevation Pachycephala sulfuri-
venter. In high-elevation species, climate change, but not
deforestation, caused population size declines to exceed range
area declines in our analysis. This is because the high-eleva-
tion species are most common at higher elevations, where
habitable areas are projected to shrink disproportionately
from climate change compared with deforestation. In con-
trast, large extents of high-elevation species’ habitat at lower
elevations are predicted to be lost from deforestation, but
the effect on population size is minimized because the spe-
cies are less common at these elevations. Differences between
range area and population size predictions were less marked
for the middle-elevation Pachycephala sulfuriventer because of
the species’ more uniform abundance across elevations. The
mismatches between range area and population size declines
we observed underscore the need for caution when project-
ing extinction risk based on range area predictions alone
(Shoo et al., 2005a; Fordham et al., 2012a).
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Figure 4 Projected percentage population and range area declines from climate change and deforestation for a (a—b) mountaintop
species, Myza sarasinorum, (c—d) high-elevation species, Phylloscopus sarasinorum, and (e—f) middle-elevation species, Pachycephala
sulfuriventer. The three study species are birds that are endemic to Sulawesi, Indonesia. The policy scenario models emissions mitigation;
reference indicates high-emissions climate change; current indicates the current deforestation rate; half indicates reducing the current
deforestation rate by half.
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The results indicate that management strategies should be
tailored to species based on their elevational distributions,
with greater emphasis placed on climate adaptation strategies
for high-elevation species and reducing deforestation for
middle-elevation species. Our results agree with other studies
that suggest highland tropical endemic birds (most of which
are currently considered of ‘least concern’ in the [UCN Red
List) are threatened with extinction in the medium term
(Williams et al., 2003; Shoo et al, 2005a; Sekercioglu et al.,
2008; Gasner et al., 2010; La Sorte & Jetz, 2010).

From 2000 to 2010, Sulawesi lost approximately 11% of
its forest, and 12% of Lore Lindu National Park (which hosts
78% of the island’s endemic bird species) was cleared. This
deforestation rate is among the fastest of any Indonesian
protected area so far reported (Linkie et al, 2004; Gaveau
et al., 2009). Our projections indicate approximately 40% of
the park will be deforested by 2050 even if the deforestation
rate is cut by half. Such large-scale deforestation will cause
substantial declines in forest-dependent birds that are ende-
mic to Sulawesi (Sodhi et al., 2005; Maas et al., 2009). Most
deforestation in the region leads to permanent conversion,
so substantial regeneration should not be expected (Clough
et al., 2009). It should be a priority of the Indonesian gov-
ernment and the conservation community to work towards
halting deforestation inside the national park, especially in
the particularly sensitive mid-elevational regions that are
most vulnerable to the synergy of direct habitat loss from
clearing and indirect climate-related shifts (see Forero-Med-
ina et al., 2011a). Maintaining large forested protected areas,
such as Lore Lindu, will likely give species critical scope to
respond to climate change (Beale et al, 2013).

Our lapse-rate modelling approach could under- or over-
estimate the impacts of climate change on tropical birds.
Our approach could over-estimate declines if species shift
slower than predicted by the lapse rate. Studies have docu-
mented moths, reptiles, amphibians and birds shifting
upwards more slowly than the lapse rate (Raxworthy et al.,
2008; Chen et al., 2009; Forero-Medina et al,, 2011b), but
other (lower resolution) studies from Asia had mixed results,
with some birds shifting faster than predicted (Peh, 2007;
Harris et al., 2012). We believe our estimates of potential cli-
mate-change impacts are conservative (at least for the high-
emissions scenario) because we limited our forecasts to 2050
and because nonlinear increases in species endangerment
from each degree of warming (because of range contraction)
were predicted in a previous global study (Sekercioglu et al.,
2008).

Our approach made several other assumptions that should
be considered as caveats when interpreting our results. When
modelling population changes from climate change, we
assumed (due to absence of alternatives) full dispersal and
that the current abundance ~ temperature relationship was
maintained over time (Shoo et al., 2005a; Gasner et al.,
2010), despite future climate-induced shifts in range attri-
butes and suitability. In addition, we were only able to test
two predictors of species abundance (temperature and
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aspect). In the current situation, temperature explains 6—-38%
of the variation in abundance and 11-64% in presence/
absence depending on study species. Our population indices
should be considered upper estimates of true population size
because the sum of the counts was the response variable;
still, this should not strongly affect the percentage changes in
population size (Fig. 4). We were also unable to consider
species interactions, which are important determinants of
species ranges (Jankowski et al, 2010, 2013; Gifford &
Kozak, 2011). Myza sarasinorum likely competes with its ele-
vational replacement species Myza celebensis at lower eleva-
tions (see Supporting Information). In addition, we could
not model vegetation shifts (or lack thereof) from climate
change (Feeley & Silman, 2010), or incorporate explicitly the
potential synergistic feedbacks between threats, both of which
can be important drivers of species distributions. It is also
possible that our study species respond to shorter and moss-
ier trees, which are correlated with elevation. In addition, all
land cover change inference was based on a comparison
between two time periods (2000 and 2010) because no other
years were available.

If rapid deforestation continues inside of Sulawesi’s Lore
Lindu National Park, endemic species will have much less
scope to adapt to the stresses of climate change. Management
efforts should therefore account for the differential pressures
of deforestation and climate change on middle- and high-ele-
vation species. Our results provide important new field data
and forecasts to reinforce previous studies that suggested
highland tropical birds are threatened with substantial popu-
lation declines from climate change. Our study demonstrates
how models can be linked to predict the relative impacts of
fine-scale habitat loss and climate change on population
status in poorly known tropical regions.
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online version of this article:

Appendix S1 Coordinates, elevation and land cover of the
point counts.

Appendix S2 Detailed methods.

Figure S1 Histograms of elevation, forest cover and sampling
effort within the study area.

Figure S2 Relationships between temperature and abundance
from fitted hurdle models for each study species.

Figure S3 Plots comparing probability of occupancy to
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probability of presence from the binomial component of
hurdle models for the study species.

Figure S4 Plots of receiver operating characteristic curves
showing predictive ability of the binomial part of hurdle
models the study species.

Figure S5 Variable importance plots from random forest
models that predicted deforestation in the study area.

Table S1 Projected reductions in the population size index
and range area for the study species under climate and land
use change scenarios.

Table S2 Land cover classification errors in Miettinen et al.’s
(2011) dataset at our 149 sampling points.
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Supporting Information

Appendix S1. Point count coordinates, elevation, and land-cover. Forested points inside the

elevational ranges of the study species (Coates & Bishop, 1997; n = 126) were used in the

analysis (shown in bold). We present these data to promote re-surveys.

Field notes on land-

Correct
classification in

Miettinen et al.’s

Point Easting Northing Elevation (m) cover (2011) dataset
Pakuli 1 829494 9863670 174 mixed agriculture open/mosaic
scrubby secondary
Pakuli 2 829748 9863606 204 growth with bamboo open/mosaic
disturbed secondary
forest with some tall
Pakuli 3 830009 9863596 292 trees plantation/regrowth
cacao patch surrounded
Pakuli 4 830160 9863389 417 by tall secondary forest  open/mosaic
edge of tall secondary
Pakuli 5 830230 9863136 502 forest above cacao forest
tall secondary forest
Pakuli 6 830378 9862921 618 with some agrofrestry forest
Pakuli 7 830639 9862897 786 primary forest forest
riparian, wet, tall forest
Dali 1 184023 9811929 1659 like at Danau Tambing  forest
riparian, wet, tall forest
Dali 2 183794 9811837 1681 like at Danau Tambing  forest
riparian, wet, tall forest
Dali 3 183555 9811717 1713 like at Danau Tambing  forest
Dali 4 183328 9811629 1772 forest, foot of drier ridge  forest
forest, drier ridge, low
Dali 5 183084 9811707 1884 elevation forest
Dali 6 182864 9811811 1959 forest, drier ridge, low forest



Dali 7

Dali 8

Dali 9

Dali 10

Dali 11

Dali 12
Dali 13

Dali 14

Dali 15

Dali 16
Dali 17
Dali 18
Dali 19
Dali 20
Dali 21
Dali 22

Dali 23
Dali 24*
Dali 25
Dali 26
Dali 27
Dali 28

182653

182419

182218

182145

182202

182322
184220

184477

184623

184853
185098
185352
185596
185836
186080
186338

186563
186826
187080
187327
187582
187838

9811655

9811555

9811412

9811164

9810915

9810689
9812093

9812073

9812272

9812398
9812440
9812486
9812535
9812437
9812335
9812345

9812220
9812217
9812179
9812098
9812036
9812011

1996

2077

2200

2229

2228

2245
1632

1689

1650

1626
1597
1567
1532
1483
1433
1357

1350
1357
1350
1348
1327
1295

elevation

many oaks, higher
elevation, still on ridge
many oaks, higher
elevation, still on ridge
high mountain forest,
very mossy

high mountain forest,
very mossy

high mountain forest,
very mossy

high mountain forest,
very mossy

forest, foot of drier ridge
forest, foot of drier ridge
with much leaf litter
forest, foot of drier ridge
with much leaf litter
last primary forest point
before entering
disturbed area

tall secondary forest

tall secondary forest

tall secondary forest

tall secondary forest

tall secondary forest
edge of field (grassy)

in forest patch
surrounded by field
grass

grass

grass

grass

grass

forest

forest

forest

forest

forest

forest
forest

forest

forest

forest
forest
forest
forest
forest
forest

open/mosaic

forest

open/mosaic
open/mosaic
open/mosaic
open/mosaic

open/mosaic



Nokilalaki 1 184603 9866234 823 cacao open/mosaic

Nokilalaki 2 184372 9866133 854 mixed agriculture open/mosaic
Nokilalaki 3 184183 9865973 886 mixed agriculture open/mosaic
Nokilalaki 4 184114 9865733 915 mixed agriculture open/mosaic

mixed agriculture, a few

remnant trees in riparian

Nokilalaki 5 184102 9865485 943 corridor open/mosaic
Nokilalaki 6 184158 9865244 973 mixed agriculture open/mosaic
mixed agricuture and
Nokilalaki 7 184235 9865006 1003 grass open/mosaic
second growth (small
Nokilalaki 8 184256 9864757 1032 patch) plantation/regrowth
primary forest next to
Nokilalaki 9 184037 9864644 1063 edge forest
Nokilalaki 10 183897 9864424 1110 forest forest
Nokilalaki 11 183656 9864340 1178 forest forest
Nokilalaki 12 183476 9864187 1210 forest forest
Nokilalaki 13 183338 9863999 1277 forest forest
Nokilalaki 14 183233 9863780 1378 forest forest
Nokilalaki 15 183117 9863563 1486 forest forest
Nokilalaki 16 183063 9863314 1544 forest forest
Nokilalaki 17 182975 9863083 1611 forest forest
Nokilalaki 18 182966 9862831 1674 forest forest
Nokilalaki 19 183047 9862597 1736 forest forest
Nokilalaki 20 183060 9862354 1835 forest forest
Nokilalaki 21 183306 9862303 1915 forest forest
Nokilalaki 22 183540 9862213 2024 forest forest
Nokilalaki 23 183685 9862014 2060 forest forest
Nokilalaki 24 183873 9861849 2052 forest forest
Nokilalaki 25 184087 9861723 2171 forest forest
Nokilalaki 26 184199 9861502 2215 forest forest
Nokilalaki 27 184353 9861304 2278 forest forest

Nokilalaki 28 184524 9861124 2340 forest forest



Nokilalaki 29

Rorekatimbu
1

Rorekatimbu
2

Rorekatimbu
3

Rorekatimbu
4

Rorekatimbu
5

Rorekatimbu
6

Rorekatimbu
7

Rorekatimbu
8

Rorekatimbu
9

Rorekatimbu
10
Rorekatimbu
11

184722

199662

199683

199939

200115

200349

200471

200430

200483

200696

200597

200487

9860969

9853794

9854041

9854082

9854272

9854366

9854581

9854828

9855076

9855221

9855449

9855675

2362

1695

1761

1803

1855

1883

1921

1984

2027

2040

2038

2072

forest

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest

along trail with older

forest

forest

forest

forest

forest

forest

forest

forest

forest

forest

forest

forest



Rorekatimbu
12

Rorekatimbu
13

Rorekatimbu
14

Rorekatimbu
15

Rorekatimbu
16

Rorekatimbu
17

Rorekatimbu
18

Rorekatimbu
19

Rorekatimbu
20
Rorekatimbu
21
Rorekatimbu
22

Rorekatimbu

200349

200226

200111

200223

200229

200363

200519

200664

200643

200614

200546
200568

9855887

9856114

9856345

9856565

9856816

9857029

9857229

9857430

9857713

9857967

9858202
9858455

2055

2108

2140

2160

2158

2170

2224

2245

2311

2366

2369
2399

forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older
forest off trail

tall secondary forest
along trail with older

forest off trail

mossy primary forest

mossy primary forest

mossy primary forest

forest

forest

forest

forest

forest

forest

forest

forest

forest

forest

forest

forest



23
Rorekatimbu
24
Rorekatimbu
25
Rorekatimbu
26
Rorekatimbu
27
Rorekatimbu
28
Rorekatimbu
29
Rorekatimbu
30
Rorekatimbu
31
Rorekatimbu
32
Rorekatimbu
33

Rorekatimbu
34
Rorekatimbu
35
Rorekatimbu
36
Rorekatimbu
37
Rorekatimbu
38
Rorekatimbu
39

200638

200486

199420

199219

198959

198799

198554

198272

198059

197953

197789

197605

197491

197285

197050

196822

9858697

9858895

9853870

9854033

9854013

9854204

9854277

9854222

9854410

9854644

9854842

9855051

9855285

9855443

9855551

9855674

2485

2512

1671

1632

1585

1564

1539

1531

1535

1494

1458

1430

1361

1343

1309

1296

mossy primary forest

mossy primary forest

tall old forest, probably

secondary

forest

forest

scrubby forest
secondary scrub,
younger than R29
forest

forest

tall secondary forest
tall secondary forest,

forest in better shape
than at R20 and R30

slightly more disturbed

than R34

tall secondary forest

tall secondary forest

tall secondary forest

disturbed secondary

forest

forest

forest

forest

forest

forest

plantation/regrowth

plantation/regrowth

forest

forest

forest

forest

forest

forest

forest

forest

plantation/regrowth



Rorekatimbu
40

Rano Rano 1

Rano Rano 2
Rano Rano 3
Rano Rano 4
Rano Rano 5
Rano Rano 6
Rano Rano 7
Rano Rano 8
Rano Rano 9
Rano Rano
10
Rano Rano
16
Rano Rano
17
Rano Rano
18
Rano Rano
19
Rano Rano
20
Rano Rano
21
Rano Rano
22
Rano Rano
23

196636

184505

184238

183977

183721

183486

183294

183054

182790

182538

182280

179997

179765

179511

179273

179036

178790

178544

178330

9855891

9814624

9814575

9814585

9814629

9814742

9814914

9815020

9814963

9814907

9814878

9817864

9817963

9818012

9818114

9818213

9818153

9818229

9818369

1264

1498

1503

1581

1618

1646

1715

1771

1844

1894

1919

1898

1892

1860

1812

1764

1749

1722

1709

secondary, next to first

farmer's field

tall forest like at Danau

Tambing, but lower

elevation

tall forest like at Danau
Tambing, but lower

elevation
ridge forest
ridge forest
forest
forest
forest
forest

forest

forest

forest

forest

forest

forest

taller, more tropical

forest

forest

forest

forest

plantation/regrowth

forest

forest
forest
forest
forest
forest
forest
forest
forest
forest
forest
forest
forest
forest
forest
forest

forest

forest



Rano Rano
24
Rano Rano
25
Rano Rano
26
Rano Rano
27

Rano Rano 28
Rano Rano
29
Rano Rano
30
Rano Rano
31
Rano Rano
32
Rano Rano
33

Rano Rano 34
Rano Rano 35
Rano Rano 36
Rano Rano 37

Rano Rano
38
Rano Rano
39

Rano Rano
40

178161

177971

177791

177593

177410

177269

177170

177065

176971

176887

173323

173449

173688

173867

174075

174268

174464

9818569

9818749

9818918

9819091

9819272

9819487

9819721

9819953

9820191

9820438

9821909

9821678

9821560

9821377

0821218

9821046

9820878

1620

1570

1516

1459

1403

1354

1282

1283

1252

1206

480

616

684

716

768

838

874

forest

forest

forest

forest
secondary forest, edge
of regenerating field

forest

return to primary forest

forest

forest

forest

bamboo, scrubby
woodland above river
young secondary forest
secondary forest

a field

0.18 km from RR 39 to
RR 38 lightly disturbed

primary forest

primary forest
becoming disturbed, but
still tall forest; rattan

trails

forest

forest

forest

forest

plantation/regrowth

forest

forest

forest

forest

forest

open/mosaic

open/mosaic

plantation/regrowth

open/mosaic

forest

forest

forest



Rano Rano
41

Rano Rano
42
Rano Rano 43
Rano Rano
44
Rano Rano
45
Rano Rano
46
Rano Rano
47
Rano Rano
48
Rano Rano
49
Rano Rano
50

174694

174944

175194

175400

175658

175798

176023

176283

176544

176702

9820755

9820684

9820614

9820445

9820423

9820644

9820778

9820802

9820765

9820588

876

884

917

979

993

1034

1042

1108

1159

1220

primary forest nearby;
some rattan collection
primary forest with
bamboo (continues until
RR 41)

scruby area near forest
primary forest
primary forest
primary forest

forest

forest

forest

forest

forest

forest

plantation/regrowth

forest

forest

forest

forest

forest

forest

forest

'Points Dali 24-28, Rorekatimbu 21-25 are outside of the national park.



Appendix S2. Supplementary Methods
Details on study species

Myza sarasinorum (white-eared myza) is a medium-sized honeyeater that inhabits montane
forest and mossy elfin forest (1700-2800 m), especially on ridges, where it feeds on nectar and
gleans insects from the understory to the canopy (Coates & Bishop, 1997; Higgins et al., 2008).
M. sarasinorum is replaced by the smaller, less conspicuous, M. celebensis (dark-eared myza) at
lower altitudes. M. sarasinorum is a pugnacious defender of flowers (Coates & Bishop, 1997);
we postulate that M. celebensis would be subordinate to M. sarasinorum. Phylloscopus
sarasinorum (Sulawesi leaf-warbler) inhabits the midstory and canopy of montane forest where
it gleans and hover-gleans small arthropods, often in association with mixed-species foraging
flocks (Coates & Bishop, 1997; Alstrém et al., 2006). Phylloscopus sarasinorum is found from
600 to 3500 m. There are no other resident Phylloscopus on Sulawesi. Pachycephala
sulfuriventer (sulphur-bellied whistler), is found in upland forest where it forages for insects
along branches and tree trunks from the understory to the canopy (Coates & Bishop, 1997;
Boles, 2007). P. sulfuriventer is found from sea level to 2500 m, mainly above 800 m. There are
no other Pachycephala on Sulawesi. Coracornis raveni (maroon-backed whistler) is an
inconspicuous inhabitant of the lower levels of montane forest from 1500-2300 m. There is no
information on potential competitive interactions between C. raveni and P. sulfuriventer. None
of the study species’ nests have been described, and none are threatened with extinction (Alstrom
et al., 2006; Boles, 2007; Higgins et al., 2008; BirdLife International, 2013).

Abundance models

We used the Poisson component of the hurdle abundance model for each species to check for
overdispersion. The residual deviance divided by the degrees of freedom from the top-ranked
Poisson model for each species was close to one (0.6-1.3 for the three study species). This
indicated our data were not substantially overdispersed (Crawley, 2007), and Poisson errors were
supported over negative binomial (Potts & Elith, 2006).



Land-cover change modeling

Miettinen et al. (2012) classified land-cover in Southeast Asia in 2000 and 2010 at a 250 m
resolution. We evaluated the accuracy of the land-cover data in our study areas by comparing the
land-cover type we observed at each bird sampling point to the layer classification. We found the
layer had 87% accuracy along our 149 points, which is similar to the overall accuracy across the
region (85%; Miettinen et al., 2012; Table S2).

In the land-cover projections, deforestation represented the permanent conversion of
forest to degraded (plantation/regrowth) or cleared (open/mosaic) land. We did not model forest
regeneration because conversion is usually permanent in Central Sulawesi (Weber et al., 2007;
Clough et al., 2009). Deforestation was modeled as an annual transition matrix, projected as a
discrete-transition Markov Chain (Takada et al., 2010). To identify which raster cells would be
changed at each time step, and to which class they would change, we used 2010 land-cover
prediction probabilities from random forest models relating land-cover change to the spatial
variables mentioned above (Liaw & Wiener, 2002; Hijmans & van Etten, 2012). The models
assigned each cell a probability of class membership in each land-cover class calculated as the
proportion of iterations in which they were assigned to that class. A cell’s predicted 2010 land-
cover class is that which has the highest probability of class membership. We calculated each
cell's vulnerability to change as the maximum probability of membership to any other land-cover
class (Eastman et al., 1995). For each time step, the land-cover change model calculated how
many and which raster cells to change, based on the deforestation projections and cell
vulnerabilities, and then altered their land-cover class to that with the second highest probability

of class membership.

Lowland temperature, adiabatic lapse rate, and climate modeling

The closest lowland weather station with the most complete recent observations was the GHCN
Gorontalo station (ID number 50397048000, 0.52° N, 123.07° E, elevation 2 m,
http://www.ncdc.noaa.gov/ghcnm/v3.php station). We calculated annual mean temperature from
2007-2010 at the station.

The best temperature records for Lore Lindu National Park come from two

meteorological research stations. We calculated the lapse rate by relating temperate to elevation



at the 417 m elevation Gimpu meteorological station (c. 1.6° S, 120.1°E; mean annual
temperature from 2002-2006; Schwendenmann et al., 2010), and the 1,400 m elevation Bariri
meteorological tower (c. 1.7° S, 120.3°E; mean annual temperature from six months of
measurements in 2011-2012). This calculation resulted in a lapse rate of 6.1°C of temperature
loss per 1000 m of elevation gained. This estimate is similar to lapse rates calculated globally
that range from 5-6°C (Sarmiento, 1986; Smith & Young, 1987; Kitayama, 1992; Gaffen et al.,
2000; Bush et al., 2004) and lapse rates calculated in Sulawesi from shorter temperature records
(7 °C on Mt. Rantemario from approximately five days of measurements (Whitten et al., 2002,
pers. comm.) and ~ 6.8 °C in the Mt. Nokilalaki region from two months of measurements
(Musser, 1982)).

We modelled the effect of climate change on abundance for each year from 2010-2050
according to two emissions scenarios: a no-climate-policy reference scenario (no greenhouse gas
emission stabilization; MiniCAM Ref.) and a corresponding policy (stabilization) scenario
(MiniCAM, Level 1) designed to stabilize at an equivalent CO, concentration of 450 ppm
(Clarke et al., 2007; Wigley et al., 2009). Seven regionally skillful Atmosphere-Ocean General
Circulation Models (BCCRBCM2, CCCMA-31, CSIR0-30, GFDLCM20, MIROCMED,
CCSM-30 and UKHADGEM) were used to generate an annual time series of multi-model
averaged climate projections using MAGICC/SCENGEN (Fordham et al., 2012). These were
downscaled to a grid cell resolution of 0.5° (approximately 50 km) using the “change factor”
method, where the low-resolution multi-model averaged predicted change in temperature was
added directly to a higher resolution baseline observed climatology — an interpolated temperature
dataset that was developed without the support of a digital elevation model (CRU 3.1 TS;
http://badc.nerc.ac.uk/home/index.html).



Supplementary Figures
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Figure S1. Elevation and 2010 forest cover of (a) Lore Lindu National Park and (b) the study

area (within 10 km of sampling points). Cells are approximately 0.85 ha; forest cover data come



from Miettinen et al. (2011). (c) Sampling effort by elevation within the study area (one

sampling session; hatched bars).
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Fig. S2. Relationships between temperature and abundance from fitted hurdle models. (a) Myza
sarasinorum, (b) Phylloscopus sarasinorum, (c) Pachycephala sulfuriventer. The linear
parameterization of temperature was the best predictor of Myza sarasinorum abundance, while
the second degree quadratic function of temperature was the best predictor for the other two
species.
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Figure S3. Plots comparing probability of occupancy (from occupancy models from three
sampling sessions) to probability of presence from the binomial component of hurdle models. (a)

Myza sarasinorum, (b) Phylloscopus sarasinorum, (c) Pachycephala sulfuriventer.
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Figure S4. Plots of receiver operating characteristic curves showing predictive ability of the
binomial part of hurdle models for (A) Myza sarasinorum, (B) Phylloscopus sarasinorum, (C)
Pachycephala sulfuriventer at different discrimination thresholds. The gray line shows a random
prediction where the model is unable to distinguish between occupied and unoccupied sites. The

area under the receiver operating characteristic curve (AUC) is given.
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Figure S5. Variable importance plots from random forest models that predicted deforestation at

(A) the current rate of deforestation and (B) half the current rate. The most important variables
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are displayed at the top of the plot. dem stands for elevation, roadsdist stands for distance from
roads, popsdist stands for distance from villages, parkdist stands for distance from park
boundary. Mean decrease accuracy measures how much the inclusion of a predictor in the model
reduces classification error, while mean decrease Gini measures the role a predictor variable

plays in partitioning the data into defined classes. See Liaw and Wiener (2002) for more details.



Supplementary Tables

Table S1. Projected reductions in the population size index (number of birds in the study area)

and range area (hectares) by 2050 for the three study species under climate and land-use change

scenarios.
climate change deforestation climate change + deforestation
) current
_ baseline _ half  current half+  half+ current +
Species policy reference ) +
(2010) rate rate  policy reference ) reference
policy
Population size (number of birds)
Myza
) 13,917 6,917 5437 13,757 13,641 6,855 5,391 6,813 5,360
sarasinorum
Phylloscopus
) 38,486 26,637 23,517 36,732 35,751 25,654 22,704 25,080 22,222
sarasinorum
Pachycephala
_ 71,179 65,392 63,168 61,846 57,728 58,011 56,394 54,657 53,280
sulfuriventer
Habitat area (hectares)
Myza
) 17,648 11,071 9,420 17,306 17,067 10,960 9,334 10,850 9,256
sarasinorum
Phylloscopus
) 60,558 54,118 51,660 53,076 49,846 48,330 46,699 45,795 44,426
sarasinorum
Pachycephala
72,026 69,539 68,573 59,816 54,476 58,585 58,060 53,845 53,532

sulfuriventer




Table S2. Land-cover classification errors in Miettinen et al.’s (2011) dataset at our 149

sampling points. There were 19 errors (87% accuracy).

classified as forest; classified as non- classified as classified as regrowth;
should have been non-  forest; should have agriculture; should  should have been
Type of error  forest been forest have been regrowth  agriculture

Number of

point counts 7 9 1 2
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